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Why Precision Analysis?

* Algorithm originally written for general-
puUrpose processors

 Want to implement on an FPGA

* Two very different computing paradigms
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General-Purpose Processor

* Word-level device

e Data type abstractions
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FPGA

 Bit-level device

 Bit-exact representation in circuit
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Conversion 1s Difficult

* Entire width of datapath not necessarily
used

* Need to match datapath size to algorithm
* Maintain correctness
* Achieve optimality

» Software designers rarely think about
overflow and underflow
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Manual Precision Analysis

* What are the provable precision
requirements of my algorithm?

* What are the actual precision requirements
of my data sets?

* What are the effects of fixed-precision on
my results?

* Where should I optimize?
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Precis: A Design-Time Tool

* Provable precision requirements:
Propagation engine

 Actual precision requirements:
Range finding

» Effects of fixed-precision:
Simulation

* Where should I optimize:
Slack analysis
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The Least Significant Bit
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* Quantized into multiples of 0.125
* Need methodology to determine the “best”
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Methodology

* Typically, truncation 1s used to model a
fixed-point datapath
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Methodology

* Reducing input bit widths to an operator
reduces the area requirement

* This same relationship holds 1f we
substitute zeros instead of truncate

» Use wires to represent substituted zeros

e Almost free 1n terms of area



Error Models
e Zero substitution introduces error
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Area Models
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Adder Area Model

Normalized Area

Adder Model vs. Virtex
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Multiplier Area Model

Normalized Area

Multiplier Model vs. Virtex
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Steering Error

Assume all inputs are 4-bit

77 2-LUTs for base implementation




Steering Error

Tolerate 0..8 error on output




Steering Error

Steer toward shorter branch

57 2-LUTs




Steering Error

Steer toward longer branch

47 2-LUTs




Steering Error

Balanced error

52 2-LUTs
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Guidelines for Precision
Optimization

* Area benefits are quantized to the number of
whole-bit substitutions that can be made

— An error range of 0..2 can not be fully utilized at a
single mput

— An error range of 0..2 can be utilized if split between
two 1nputs

— If error cannot be distributed completely, overall output
error can be reduced (take up slack)

 Area benefits increase as error 1s steered toward
longer branches

— More opportunity to reduce the area of ancestor nodes
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Rethinking Error

* With straight substitution of zeros, the error range
1s entirely positive

4,0, 0.27 -1
0.27+29-2
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« Reconsider the error as the net distance from the
real value

* Achieves twice the error range while maintaining
the same relative level of accuracy
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Renormalization

* Can bias the output error range by
substituting ones and zeros strategically

4,1, — (27 -1)..0

— (27 =1).279 -1
c ( )
Bnoq 0.29 -1
0..27 -1
s £, (2QA-E ) £y (2B+E)
~-—2(2A-E,)).—2Q2B+
c 2 ) !
B1 ~_(a_
- nlg (29-1)..0 e



Renormalization

 Alternatively, renormalize later by adding a
constant to bias the error range
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Conclusions

 Precision optimization of circuit datapath 1s
a major implementation detail

e Poor support from a tools perspective

* Proposed methodologies for precision
optimization of least significant bit position
— Area and Error models
— Optimization guidelines

— Renormalization alternatives



Future Directions
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Active vs. Lazy Renormalization
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Active vs. Lazy Renormalization

*When/How should we perform renormalization?
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Active vs. Lazy Renormalization

*Do the primary inputs give us enough control?
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Active vs. Lazy Renormalization

*When do we need to insert bias points?
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Active vs. Lazy Renormalization

*What 1s the area impact of various types of
o renormalization?
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Active vs. Lazy Renormalization

*What 1s the area impact of various types of
A renormalization?
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Active vs. Lazy Renormalization

*]s there a “best” way to renormalize?
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Renormalization Approaches

 Determine area effects of renormalization
— Single operator node (active)
— Constant bias (lazy)

e Determine area effects these
renormalization methods have on child
nodes

 With area and error, we can deduce an
algorithm for type and placement
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